
Introduction to
parallel programming (for physicists)

FRANÇOIS GÉLIS & GRÉGOIRE MISGUICH, IPhT courses, June 2019.

1. Introduction & hardware aspects (FG)

2. A few words about Maple & Mathematica

3. Linear algebra libraries

4. Fast Fourier transform

5. Python Multiprocessing

6. OpenMP

7. MPI (FG)

8. MPI+OpenMP (FG)

Th
ese

slid
es (G

M
)

Parallel programing in Python

Threads versus Processes

A given application/program may run different processes and different
threads

Process
• Each process has its own memory space.

→ they are somewhat independent
• Switching from one process requires some interaction with the

operating system → slow switching

Thread
• Threads (associated to a given process) share the same memory

space
→ Threads can share information easily /quickly

• There is no memory “protection” between the threads of the
same process → responsibility of the programmer

• Threads have little information of their own
→ faster to create than processes

my-program.exe

Process 0
Process 1

Th
read

 0

Th
read

 1

Th
read

 0 Th
read

 1

Th
read

 2
tim

e

Example of application
using several processes

Parallel programing in Python

• Thread library (import threading)
Can start several threads, but they will not run simultaneously
(because of the Global Interpreter Lock – a.k.a. GIL).

Can be useful for some I/O tasks (because the CPU will be waiting for
some remote server, etc.), but not really for computations.
… will not be discussed here.

• Multiprocessing library (import multiprocessing)
Allows to perform tasks simultaneously (using processes instead of
threads)
We will present a few examples using:
• Process, Queue

• Pool, map, imap

Python/Multiprocessing
Multiprocessing.Process

import os, math

from multiprocessing import Process,Queue

def my_function(r,q):

proc = os.getpid()

i1=r[0]**3

i2=r[1]**3

print('Process #{0} will sum from {1}

to {2}'.format(proc,i1,i2))

sum=0.0

for i in xrange (i1,i2):

sum+=math.sin(i)

q.put((i1,i2,sum))

ranges = [[1,100], [201,300],

[300,400],[401,500]]

list_of_procs = []

q=Queue()

for r in ranges:

p = Process(target=my_function,

args=(r,q))

list_of_procs.append(p)

p.start()

for p in list_of_procs:

p.join()

results=[q.get() for p in list_of_procs]

print(results)

q: Object where each
process can write its result

Processes do not share memory,
which means that the global
variables are copied, hence their
value in the original process do
not change.

This example does not work
(i.e. output is [0,0,0,0])

import os, math

from multiprocessing import Process

A=[0,0,0,0]

def my_function(i):

A[i]=A[i]+1

return

list_of_procs = []

for r in range(4):

p = Process(target=my_function, args=(r,))

list_of_procs.append(p)

p.start()

for p in list_of_procs:

p.join()

print(A)

Python/Multiprocessing
Multiprocessing.Process

Python/multiprocessing
Multiprocessing.Pool

import numpy as np

import multiprocessing as mp

import numpy.random as npr

from sympy import *

def gsrm(i):

n=200

A = npr.randn(n,n)

ev=np.linalg.eigvals(A)

return i,ev[0].real

p=mp.Pool(processes=4)

print(p.map(gsrm,range(9)))

results=p.imap_unordered(gsrm,range(9))

for r in results:

print (r)

Blocks untill all
task are finished

Does not block

Python/multiprocessing
Multiprocessing.Pool & linear algebra:
processes versus threads

import numpy as np

import multiprocessing as mp

import numpy.random as npr

import time

def smallest_ev(M):

ev=np.linalg.eigvals(M)

return ev[0].real

p=mp.Pool(processes=2)

#Two random matrices:

n=2000

A=npr.randn(n,n)

B=npr.randn(n,n)

t0 = time.time()

results=p.imap_unordered(smallest_ev,

[A,B])

t1 = time.time() - t0

print(" Time after .imap_unordered=%0.4f

s" % (t1))

for r in results:

print (r)

t1 = time.time() - t0

print(" Time after print results=%0.4f s"

% (t1))

t0 = time.time()

print(smallest_ev(A))

print(smallest_ev(B))

t1 = time.time() - t0

print(" Sequential time=%0.4f s" % (t1))

Python/multiprocessing
Multiprocessing.Pool &
linear algebra: processes versus threads

2 workers (=processes), each one
using ~12 threads (and 12 CPU cores)
[mutli-threaded linear algebra lib.]

Python/multiprocessing
Multiprocessing.Pool &
linear algebra: processes versus threads

Single Python processe
using ~24 threads (and 24 CPU cores)

import multiprocessing as mp

from sympy import *

p=mp.Pool(processes=3)

x = symbols('x')

print(p.map(integrate,[x,x**2,x**3]))

Python/multiprocessing
Multiprocessing.Pool & Sympy

import multiprocessing as mp

from sympy import *

import sys

x = symbols('x')

A= [exp(x),sin(x),cos(x),cosh(x),sinh(x)]

def my_func(f):

count=0

while (count<10000) :

f=diff(f,x)

count=count+1

return f

Pass the wanted number of process as command-

line argument

np=int(sys.argv[1])

p=mp.Pool(processes=np)

results=p.map(my_func,A)

print(results)

Python/multiprocessing
Multiprocessing.Pool & Sympy

